國家衛生研究院 NHRI:Item 3990099045/13497
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 911611      Online Users : 944
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/13497


    Title: Injectable phenolic-chitosan self-healing hydrogel with hierarchical micelle architectures and fast adhesiveness
    Authors: Lin, SH;Papadakis, CM;Kang, JJ;Lin, JM;Hsu, SH
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Biodegradable self-healing hydrogels are highly desirable materials for therapeutic systems, reusable devices, and intelligent cell/drug carriers. Many research efforts focus on additional functionalities of self-healing hydrogels through physical or chemical strategies/designs. Herein, N-[3-(4-hydroxyphenyl)propanamido] chitosan and a difunctional Pluronic-F127 crosslinker (DF-PF) were synthesized and reacted to form the phenolic-chitosan self-healing hydrogel (CPF) with a high water content (96.5 wt%). Coherent small-angle X-ray scattering (SAXS) analyses of the hydrogel revealed a fast-forming primary fractal network followed by the gradual formation of a secondary micellar structure (∼12 nm). Such core-shell micellar architectures reinforced the hierarchical structure and endowed the hydrogel with thermoresponsiveness, verified by rheology and SAXS. Owing to the bioinspired phenolic chemistry, the CPF hydrogel was adhesive (binding strength 4-7 kPa) to artificial skin. Together with the rapid (<30 s) gelation kinetics, the hydrogel can be delivered by a dual-syringe as a fast adhesive. Moreover, the fast-gelled nature of the CPF hydrogel allowed spatially homogeneous embedding of mesenchymal stem cells that further developed into multicellular spheroids in 14 days. This new self-healing hydrogel shows multifunctionalities, benefiting from micellar architectures and phenolic modification. The corresponding hierarchical structure investigation provides an insight into the multiscale designs of a next-generation self-healing hydrogel for biomedical applications.
    Date: 2021-05-12
    Relation: Chemistry of Materials. 2021 May 12;33(11):3945-3958.
    Link to: http://dx.doi.org/10.1021/acs.chemmater.1c00028
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0897-4756&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000661521800008
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106471933
    Appears in Collections:[Shan-Hui Hsu] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    SCP85106471933.pdf8467KbAdobe PDF321View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback