English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 855281      Online Users : 1036
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/13332


    Title: Alveolar epithelial inter-α-trypsin inhibitor heavy chain 4 deficiency associated with senescence-regulated apoptosis by air pollution
    Authors: Chen, XY;Feng, PH;Han, CL;Jheng, YT;Wu, CD;Chou, HC;Chen, YY;Wu, SM;Lee, KY;Kuo, HP;Chung, KF;Hsiao, TC;Chen, KY;Ho, SC;Chang, TY;Chuang, HC
    Contributors: National Institute of Environmental Health Sciences
    Abstract: Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) is a type II acute-phase protein; however, the role of pulmonary ITIH4 after exposure to air pollution remains unclear. In this study, we investigated the role of ITIH4 in the lungs in response to air pollution. ITIH4 expression in bronchoalveolar lavage fluid (BAL) of 47 healthy human subjects and of Sprague-Dawley rats whole-body exposed to air pollution was determined, and the underlying antiapoptotic and matrix-stabilizing pathways in alveolar epithelial A549 cells induced by diesel exhaust particles (DEPs) as well as ITIH4-knockdown were investigated. We found that an interquartile range (IQR) increase in PM2.5 was associated with a decrease of 2.673 ng/mL in ITIH4, an increase of 1.104 pg/mL of 8-isoprostane, and an increase of 6.918 pg/mL of interleukin (IL)-6 in human BAL. In rats, increases in 8-isoprostane, IL-6, and p53 and a decrease in sirtuin-1 (Sirt1) in the lungs and decreases in ITIH4 in the BAL, lungs, and serum were observed after PM2.5 and gaseous exposure. ITIH4 levels in lung lysates were correlated with levels in BAL samples (r = 0.377, p < 0.01), whereas ITIH4 levels in BAL were correlated with IL-6 levels (r = −0.420, p < 0.01). ITIH4 expression was significantly reduced in alveolar epithelial A549 cells by DEP in a dose-dependent manner. A decrease in Sirt1 and increases in phosphorylated extracellular signal-regulated kinase (p-ERK) and caspase-3 were observed after DEP exposure and ITIH4-knockdown. In conclusion, air pollution decreased ITIH4 expression in the lungs, which was associated with alveolar epithelial cell senescence and apoptosis. ITIH4 could be a vital protein in regulating alveolar cell destruction and its inhibition after exposure to air pollution.
    Date: 2021-06-01
    Relation: Environmental Pollution. 2021 Jun 1;278:Article number 116863.
    Link to: http://dx.doi.org/10.1016/j.envpol.2021.116863
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0269-7491&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000641372900005
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85102590779
    Appears in Collections:[其他] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85102590779.pdf1420KbAdobe PDF218View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback