Isolation and enumeration of bacteria at ultralow concentrations and antibiotic resistance profiling are of great importance for early diagnosis and treatment of bacteremia. In this work, we describe a simple, rapid, and versatile magnetic-assisted microfluidic method for rapid bacterial detection. The developed method enables magnetophoretic loading of bead-captured bacteria into the microfluidic chamber under external static and dynamic magnetic fields in 4 min. A shallow microfluidic chamber design that enables the monolayer orientation and transportation of the beads and a glass substrate with a thickness of 0.17 mm was utilized to allow high-resolution fluorescence imaging for quantitative detection. Escherichia coli (E. coli) with green fluorescent protein (GFP)-expressing gene and streptavidin-modified superparamagnetic microbeads were used as model bacteria and capturing beads, respectively. The specificity of the method was validated using Lactobacillus gasseri as a negative control group. The limit of detection and limit of quantification values were determined as 2 CFU/ml and 10 CFU/ml of E. coli, respectively. The magnetic-assisted microfluidic method is a versatile tool for the detection of ultralow concentrations of viable bacteria with the linear range of 5–5000 CFU/ml E. coli in 1 h, and providing growth curves and phenotypic characterization bead-captured E. coli in the following 5 h of incubation. Our results are promising for future rapid and sensitive antibiotic susceptibility testing of ultralow numbers of viable cells.