國家衛生研究院 NHRI:Item 3990099045/13281
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 967210      線上人數 : 876
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    國家衛生研究院 NHRI > 癌症研究所 > 其他 > 期刊論文 >  Item 3990099045/13281
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13281


    題名: YM155 and BIRC5 downregulation induce genomic instability via autophagy-mediated ROS production and inhibition in DNA repair
    作者: Cheng, SM;Lin, TY;Chang, YC;Lin, IW;Leung, E;Cheung, CHA
    貢獻者: National Institute of Cancer Research
    摘要: Activation of autophagy plays a critical role in DNA repair, especially for the process of homologous recombination. Despite upregulation of autophagy promotes both the survival and the death of cells, the pathways that govern the pro-cell death effects of autophagy are still incompletely understood. YM155 is originally developed as an expression suppressant of BIRC5 (an anti-apoptotic molecule) and it has reached Phase I/II clinical trials for the treatment of variety types of cancer. However, the target-specificity of YM155 has recently been challenged as several studies reported that YM155 exhibits direct DNA damaging effects. Recently, we discovered that BIRC5 is an autophagy negative-modulator. Using function-comparative analysis, we found in the current study that YM155 and BIRC5 siRNA both induced early “autophagy-dependent ROS production-mediated” DNA damage/strand breaks and concurrently downregulated the expression of RAD54L, RAD51, and MRE11, which are molecules known for their important roles in homologous recombination, in human cancer (MCF7, MDA-MB-231, and SK-BR-3) and mouse embryonic fibroblast (MEF) cells. Similar to the effects of YM155 and BIRC5 siRNA, downregulation of RAD54L and RAD51 by siRNA induced autophagy and DNA damage/strand breaks in cells, suggesting YM155/BIRC5 siRNA might also induce autophagy partly through RAD54L and RAD51 downregulations. We further observed that prolonged YM155 and BIRC5 siRNA treatment induced autophagic vesicle formation proximal to the nucleus and triggered DNA leakage. In conclusion, our findings reveal a novel mechanism of action of YM155 (i.e. induces autophagy-dependent ROS production-mediated DNA damage) in cancer cells and show the functional complexity of BIRC5 and autophagy involving the modulation of genome stability, highlighting that upregulation of autophagy is not always beneficial to the DNA repair process. Our findings can aid the development of a variety of BIRC5-directly/indirectly targeted anticancer therapies that are currently under pre-clinical and clinical investigations.
    日期: 2021-04
    關聯: Pharmacological Research. 2021 Apr;166:Article number 105474.
    Link to: http://dx.doi.org/10.1016/j.phrs.2021.105474
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1043-6618&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000643656100014
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100694225
    顯示於類別:[其他] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85100694225.pdf15778KbAdobe PDF229檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋