國家衛生研究院 NHRI:Item 3990099045/13270
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 913179      在线人数 : 1180
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13270


    题名: Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan
    作者: Wong, PY;Hsu, CY;Wu, JY;Teo, TA;Huang, JW;Guo, HR;Su, HJ;Wu, CD;Spengler, JD
    贡献者: National Institute of Environmental Health Sciences
    摘要: This paper is the first of its kind to use machine learning algorithms in conjunction with a Land-use Regression (LUR) model for predicting the spatiotemporal variation of CO concentrations in Taiwan. We used daily CO concentration from 2000 to 2016 to develop model and data from 2017 to 2018 as external data to verify the model reliability. Location of temples was used as a predictor to account for Asian culturally specific sources. With the ability to capture nonlinear relationship between observations and predictions, three LUR-based machine learning algorithms were used to estimate CO concentrations, including deep neural network (DNN), random forest (RF), and extreme gradient boosting (XGBoost). The results showed that LUR-based machine-learning model (LUR-XGBoost) has the best computation efficiency and improved adjusted R2 from 0.69 to 0.85. Our studies demonstrate the ability of the LUR-based machine learning algorithms to estimate long-term spatiotemporal CO concentration variations in fine resolution.
    日期: 2021-05
    關聯: Environmental Modelling and Software. 2021 May;139:Article number 104996.
    Link to: http://dx.doi.org/10.1016/j.envsoft.2021.104996
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1364-8152&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000641409100008
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101257052
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85101257052.pdf4422KbAdobe PDF347检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈