國家衛生研究院 NHRI:Item 3990099045/1326
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 909672      在线人数 : 829
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/1326


    题名: Influence of intron and exon splicing enhancers on mammalian cell expression of a truncated spike protein of SARS-CoV and its implication for subunit vaccine development
    作者: Chang, CY;Hong, WWL;Chong, PL;Wu, SC
    贡献者: Vaccine Research and Development Center
    摘要: The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is important for vaccine development. A truncated S protein of the TW1 strain, S-TR2 (88 kDa), carrying three S fragments (S74-253, S294-739, and S1129-1255) was investigated to study the influences of intron and exon splicing enhancers to improve S-TR2 protein expression in mammalian cells. Our results showed that STR2 protein expression with the use of an 138 base-pair intron addition increased by 1.9-, 2.5-, and 4.1-fold in Vero E6, QBI-293A cells, and CHO/dhFr- cells (dihydrofolate reductase [dhfr] gene deficient CHO cells), respectively. Using the exon splicing enhancers, including a bidirectional splicing enhancer (BSE) or an exon splicing enhancer derived from the EDA alternative exon of the fibronectin gene (EDA ESE), were also found to increase STR2 protein expression in CHO/dhFr- cells by 1.7- and 2.6-fold. Nevertheless, combination of the intron and the exon splicing enhancers resulted in suppressing the intron-enhancing e STR2 protein expression in in CHO/dhFr- cells. Our studies also demonstrated the STR2 protein was mainly as the Endo H-sensitive glycoprotein (115 kDa) expressed in Vero E6, QBI-293A, and CHO/dhFr-cells. However, only a minor form of the Endo H-resistant glycoproteins (similar to 130 kDa) was detected in CHO/dhFr- cells. Taken together, our results indicated that intron had a better enhancing effect on STR2 protein expression than exon splicing enhancers, and the expression of similar to 130 kDa S-TR2 glycoprotein was enhanced by the intron addition into the expression vector construct. Results of the present study can provide an optimal strategy to enhance SARS-CoV S protein expression in mammalian cells and may contribute to the development of SARS-CoV subunit vaccine. (c) 2005 Elsevier Ltd. All rights reserved.
    关键词: Immunology;Medicine, Research & Experimental;Veterinary Sciences
    日期: 2006-02-20
    關聯: Vaccine. 2006 Feb;24(8):1132-1141.
    Link to: http://dx.doi.org/10.1016/j.vaccine.2005.09.011
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0264-410X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000235647900011
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=32044439096
    显示于类别:[莊再成] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    000235647900011.pdf437KbAdobe PDF677检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈