國家衛生研究院 NHRI:Item 3990099045/13115
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 956954      線上人數 : 836
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13115


    題名: An injectable, electroconductive hydrogel/scaffold for neural repair and motion sensing
    作者: Xu, J;Wong, CW;Hsu, SH
    貢獻者: Institute of Cellular and Systems Medicine
    摘要: Electroconductive hydrogels and scaffolds have great potential for strain sensing and in tissue engineering. Herein, we designed electroconductive self-healing hydrogels and shape-recoverable scaffolds with injectability, strain/motion-sensing ability, and neural regeneration capacity. The crosslinked network of hydrogels and scaffolds was synthesized and prepared under physiological conditions from N-carboxyethyl chitosan (CEC), a chitosan-modified polypyrrole (DCP) nanoparticle (∼40 nm), and a unique aldehyde-terminated difunctional polyurethane (DFPU) crosslinker. CEC was mixed with DCP by electrostatic interaction and then crosslinked with DFPU through a dynamic Schiff base reaction. Schiff base endowed the hydrogels with self-healing behavior, confirmed by rheological examinations. Shape-recoverable scaffolds were obtained by freeze-drying the hydrogels. These hydrogels and scaffolds showed injectability and conductivity (3-6 mS/cm), while the scaffolds also exhibited high water absorption and durable elasticity after repeated deformation. The hydrogels and scaffolds promoted the attachment, proliferation, and differentiation of neural stem cells (NSCs). The scaffolds had excellent strain/motion-sensing properties in vitro and ex vivo as well as biodegradability and biocompatibility in vivo. Moreover, the neural regeneration capacity of the conductive hydrogel or the cell-laden conductive hydrogel was demonstrated by the rescue of motor function (∼53 and ∼80% functional recoveries, respectively) in the zebrafish brain injury model. These hydrogels and scaffolds are potential candidates for nerve repair and motion sensing.
    日期: 2020-12-07
    關聯: Chemistry of Materials. 2020 Dec 7;32(24):10407-10422.
    Link to: http://dx.doi.org/10.1021/acs.chemmater.0c02906
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0897-4756&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000603288800010
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85097742898
    顯示於類別:[徐善慧] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85097742898.pdf11917KbAdobe PDF297檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋