國家衛生研究院 NHRI:Item 3990099045/13027
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 857627      線上人數 : 687
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13027


    題名: Prediction of antidepressant treatment response and remission using an ensemble machine learning framework
    作者: Lin, E;Kuo, PH;Liu, YL;Yu, YWY;Yang, AC;Tsai, SJ
    貢獻者: Center for Neuropsychiatric Research
    摘要: In the wake of recent advances in machine learning research, the study of pharmacogenomics using predictive algorithms serves as a new paradigmatic application. In this work, our goal was to explore an ensemble machine learning approach which aims to predict probable antidepressant treatment response and remission in major depressive disorder (MDD). To discover the status of antidepressant treatments, we established an ensemble predictive model with a feature selection algorithm resulting from the analysis of genetic variants and clinical variables of 421 patients who were treated with selective serotonin reuptake inhibitors. We also compared our ensemble machine learning framework with other state-of-the-art models including multi-layer feedforward neural networks (MFNNs), logistic regression, support vector machine, C4.5 decision tree, naïve Bayes, and random forests. Our data revealed that the ensemble predictive algorithm with feature selection (using fewer biomarkers) performed comparably to other predictive algorithms (such as MFNNs and logistic regression) to derive the perplexing relationship between biomarkers and the status of antidepressant treatments. Our study demonstrates that the ensemble machine learning framework may present a useful technique to create bioinformatics tools for discriminating non-responders from responders prior to antidepressant treatments.
    日期: 2020-10-13
    關聯: Pharmaceuticals. 2020 Oct 13;13(10):Article number 305.
    Link to: http://dx.doi.org/10.3390/ph13100305
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1424-8247&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000586926600001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85092519757
    顯示於類別:[劉玉麗] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85092519757.pdf471KbAdobe PDF297檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋