國家衛生研究院 NHRI:Item 3990099045/12809
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906030      在线人数 : 646
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12809


    题名: Bacterial chemotaxis in thin fluid layers with free surface
    作者: Ivancic, F;Sheu, TWH;Solovchuk, M
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Thin fluid layers are common natural habitats for various species of aerobic bacteria. Collective behaviors in bacterial colonies caused by chemotaxis can form complex bioconvection patterns, which often work in favor of the colony's survival and growth. The connection between the biology of bacterial aerotaxis and the physics of buoyancy effects caused by non-uniform suspension density is numerically investigated for a suspension of oxytactic bacteria placed in the Petri dish. The upper surface is free and open to the atmosphere, and through it oxygen diffuses into the suspension. Surface tension and dynamic contact line are incorporated into the mathematical and numerical models. A comparison has been made between dynamic free surface and fixed free surface models, and differences have been revealed. The parametric study in the case of dynamic free surface has been performed, and the non-linear dynamics of the phenomenon has been investigated. Resulting from upward aerotaxis and downward gravitational force, Rayleigh-Taylor-like instabilities develop between layers of different densities in the suspension. Bacterial plume patterns and their dynamics, such as sinking, merging, and birth of new plumes, characterize the phenomenon for particular intervals of dimensionless parameters. Accordingly, categorization of the phenomenon based on bacterial plume evolution has been made, and significant intervals of dimensionless parameters have been extracted.
    日期: 2020-06
    關聯: Physics of Fluids. 2020 Jun;32(6):Article number 061902.
    Link to: http://dx.doi.org/10.1063/5.0005157
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1070-6631&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000541914600001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85087612888
    显示于类别:[馬克沁] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000541914600001.pdf6904KbAdobe PDF247检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈