國家衛生研究院 NHRI:Item 3990099045/12660
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 853525      在线人数 : 996
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12660


    题名: MEHP interferes with mitochondrial functions and homeostasis in skeletal muscle cells
    作者: Chen, YH;Wu, YJ;Chen, WC;Lee, TS;Tsou, TC;Chang, HC;Lo, SW;Chen, SL
    贡献者: National Institute of Environmental Health Sciences
    摘要: Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer frequently leached out from polyvinyl chloride (PVC) products and is quickly metabolized to its monoester equivalent mono(2-ethylhexyl) phthalate (MEHP) once enters organisms. Exposure to DEHP/MEHP through food chain intake has been shown to modified metabolism but its effect on the development of metabolic myopathy of skeletal muscle (SKM) has not been revealed so far. Here, we found that MEHP repressed myogenic terminal differentiation of proliferating myoblasts (PMB) and confluent myoblasts (CMB) but had weak effect on this process once it had been initiated. The transition of mitochondria (MITO) morphology from high efficient filamentary network to low efficient vesicles was triggered by MEHP, implying its negative effects on MITO functions. The impaired MITO functions was further demonstrated by reduced MITO DNA (mtDNA) level and SDH enzyme activity as well as highly increased reactive oxygen species (ROS) in cells after MEHP treatment. The expression of metabolic genes, including PDK4, CPT1b, UCP2, and HO1, was highly increased by MEHP and the promoters of PDK4 and CPT1b were also activated by MEHP. Additionally, the stability of some subunits in the oxidative phosphorylation system (OXPHOS) complexes was found to be reduced by MEHP, implying defective oxidative metabolism in MITO and which was confirmed by repressed palmitic acid oxidation in MEHP-treated cells. Besides, MEHP also blocked insulin-induced glucose uptake. Taken together, our results suggest that MEHP is inhibitory to myogenesis and is harmful to MITO functions in SKM, so its exposure should be avoided or limited.
    日期: 2020-04-30
    關聯: Bioscience Reports. 2020 Apr 30;40(4):Article number BSR20194404.
    Link to: http://dx.doi.org/10.1042/bsr20194404
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0144-8463&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000530890500001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083745275
    显示于类别:[鄒粹軍] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB32255176.pdf3078KbAdobe PDF265检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈