|
English
|
正體中文
|
简体中文
|
Items with full text/Total items : 12145/12927 (94%)
Visitors : 908051
Online Users : 913
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
http://ir.nhri.org.tw/handle/3990099045/12615
|
Title: | Hepatitis C virus genotypes 1–3 infections regulate lipogenic signaling and suppress cholesterol biosynthesis in hepatocytes |
Authors: | Hsu, CS;Liu, WL;Li, Q;Lowey, B;Hertz, L;Chao, YC;Liang, TJ;Chen, DS;Kao, JH |
Contributors: | National Mosquito-Borne Diseases Control Research Center |
Abstract: | Background: Patients with different hepatitis C virus (HCV) genotype infections are associated with varying metabolic disorders. Although alteration of lipid metabolism has been confirmed as a virus-induced metabolic derangement in chronic hepatitis C patients, the impact of various HCV genotypes on hepatic cholesterol metabolism remains elusive. In this study, we thus investigated the HCV genotype-specific lipogenic and cholesterol metabolism profiles in an in vitro cell culture system. Methods: We first conducted HCV cell culture system (HCVcc) assays by infecting Huh7.5.1 cells with multiple infection-competent HCV strains, including the genotype 2a JFH1 and JFH1-based intergenotypic recombinants 1b and 3a. We then examined the expression levels of various lipid and cholesterol-related genes. Results: The data showed that infection with individual HCV genotypes exerted unique gene expression regulatory effects on lipoproteins and cholesterol metabolism genes. Of note, all HCV strains suppressed cholesterol biosynthesis in hepatocytes through downregulating the expression of HMG-CoA reductase (HMGCR) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1) – two essential enzymes for cholesterol biosynthesis. These HCV-mediated inhibitory effects could be reversed by treatment with sofosbuvir, a pangenotypic NS5B inhibitor. In addition, overexpression of HCV genotype 1b, 2a or 3a core protein significantly suppressed HMGCR mRNA transcription and translation, thus diminished cellular cholesterol biosynthesis. Nonetheless, the core protein had no effect on FDFT1 expression. Conclusion: Although HCV infection regulates host lipid metabolism in a genotype-specific manner, its inhibition on hepatocellular cholesterogenic gene expression and total cholesterol biosynthesis is a common effect among HCV genotype 1b, 2a and 3a. |
Date: | 2020-09 |
Relation: | Journal of the Formosan Medical Association. 2020 Sep;119(9):1382-1395. |
Link to: | http://dx.doi.org/10.1016/j.jfma.2020.03.018 |
JIF/Ranking 2023: | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0929-6646&DestApp=IC2JCR |
Cited Times(WOS): | https://www.webofscience.com/wos/woscc/full-record/WOS:000564404500006 |
Cited Times(Scopus): | https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083015145 |
Appears in Collections: | [其他] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
SCP85083015145.pdf | | 2004Kb | Adobe PDF | 219 | View/Open |
|
All items in NHRI are protected by copyright, with all rights reserved.
|