國家衛生研究院 NHRI:Item 3990099045/12597
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 854171      在线人数 : 1528
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12597


    题名: The bioactive core and corona synergism of quantized gold enables slowed inflammation and increased tissue regeneration in wound hypoxia
    作者: Yeh, LC;Chen, SP;Liao, FH;Wu, TH;Huang, YT;Lin, SY
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: The progress of wound regeneration relies on inflammation management, while neovascular angiogenesis is a critical aspect of wound healing. In this study, the bioactive core and corona synergism of quantized gold (QG) were developed to simultaneously address these complicated issues, combining the abilities to eliminate endotoxins and provide oxygen. The QG was constructed from ultrasmall nanogold and a loosely packed amine-based corona via a simple process, but it could nonetheless eliminate endotoxins (a vital factor in inflammation also called lipopolysaccharides) and provide oxygen in situ for the remodeling of wound sites. Even while capturing endotoxins through electrostatic interactions, the catalytic active sites inside the nanogold could maintain its surface accessibility to automatically transform the overexpressed hydrogen peroxide in hypoxic wound regions into oxygen. Since the inflammatory stage is an essential stage of wound healing, the provision of endotoxin clearance by the outer organic corona of the QG could slow inflammation in a way that subsequently promoted two other important stages of wound bed healing, namely proliferation and remodeling. Relatedly, the efficacy of two forms of the QG, a liquid form and a dressing form, was demonstrated at wound sites in this study, with both forms promoting the development of granulation, including angiogenesis and collagen deposition. Thus, the simply fabricated dual function nanocomposite presented herein not only offers reduced batch-to-batch variation but also increased options for homecare treatments.
    日期: 2020-03-02
    關聯: International Journal of Molecular Sciences. 2020 Mar 2;21(5):Article number 1699.
    Link to: http://dx.doi.org/10.3390/ijms21051699
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1422-0067&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000524908500150
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85081159984
    显示于类别:[林淑宜] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB32131445.pdf5027KbAdobe PDF272检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈