國家衛生研究院 NHRI:Item 3990099045/12595
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 908259      Online Users : 964
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/12595


    Title: MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer
    Authors: Shiah, SG;Hsiao, JR;Chang, HJ;Hsu, YM;Wu, GH;Peng, HY;Chou, ST;Kuo, CC;Chang, JY
    Contributors: National Institute of Cancer Research;Institute of Biotechnology and Pharmaceutical Research
    Abstract: BACKGROUND: Epigenetic silencing of retinoic acid (RA) signaling-related genes have been linked with the pathogenesis and clinical outcome in oral squamous cell carcinoma (OSCC) carcinogenesis. However, the precise mechanisms underlying the abnormal silencing of RA signaling-related genes in OSCC have not been well investigated. METHODS: Using combined analysis of genome-wide gene expression and methylation profile from 40 matched normal-tumor pairs of OSCC specimens, we found a set of retinoid signaling related genes are frequently hypermethylated and downregulated in OSCC patient samples, including alcohol dehydrogenase, iron containing 1 (ADHFE1) and aldehyde dehydrogenase 1 family, member A2 (ALDH1A2), which are the important rate-limiting enzymes in synthesis of RA. The expression of ADHFE1 and ALDH1A2 in OSCC patients was determine by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. The binding sites of miR-30a and miR-379 with DNA methyltransferase 3B (DNMT3B) were predicted using a series of bioinformatic tools, and validated using dual luciferase assay and Western blot analyses. The functions of miR-30a, miR-379, and DNMT3B were accessed by growth and colony formation analyses using gain- and loss-of-function approaches. Chromatin immunoprecipitation (ChIP) was performed to explore the molecular mechanisms by arecoline and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) treatment. RESULTS: We demonstrated that deregulated miR-30a and miR-379 could represent a mechanism for the silencing of ADHFE1 and ALDH1A2 in OSCC through targeting DNMT3B. Ectopic expression of miR-30a and miR-379 could induce re-expression of methylation-silenced ADHFE1 and ALDH1A2, and lead to growth inhibition in oral cancer cells. Furthermore, the dysregulation of the miRNAs and DNMT-3B may result from exposure to tobacco smoking and betel quid chewing. CONCLUSIONS: Our results demonstrate that tobacco smoking and betel quid chewing could repress miR-30a and miR-379, which upregulate the DNMT3B expression, in turn, lead to the hypermethylation of ADHFE1 and ALDH1A genes, consequently, promote the oncogenic activity. These findings highlight the potential use of retinoids in combination with epigenetic modifiers for the prevention or treatment of oral cancer.
    Date: 2020-04-02
    Relation: Journal of Biomedical Science. 2020 Apr 2;27:Article number 46.
    Link to: http://dx.doi.org/10.1186/s12929-020-00644-z
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1021-7770&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000523441400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85082841132
    Appears in Collections:[Jang-Yang Chang] Periodical Articles
    [Shine-Gwo Shiah] Periodical Articles
    [Ching-Chuan Kuo] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    PUB32238162.pdf4781KbAdobe PDF370View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback