Loading...
|
Please use this identifier to cite or link to this item:
http://ir.nhri.org.tw/handle/3990099045/12063
|
Title: | Soluble epoxide hydrolase inhibition attenuates excitotoxicity involving 14,15-Epoxyeicosatrienoic acid-mediated astrocytic survival and plasticity to preserve glutamate homeostasis |
Authors: | Kuo, YM;Hsu, PC;Hung, CC;Hu, YY;Huang, YJ;Gan, YL;Lin, CH;Shie, FS;Chang, WK;Kao, LS;Tsou, MY;Lee, YH |
Contributors: | Center for Neuropsychiatric Research |
Abstract: | Astrocytes play pivotal roles in regulating glutamate homeostasis at tripartite synapses. Inhibition of soluble epoxide hydrolase (sEHi) provides neuroprotection by blocking the degradation of 14,15-epoxyeicosatrienoic acid (14,15-EET), a lipid mediator whose synthesis can be activated downstream from group 1 metabotropic glutamate receptor (mGluR) signaling in astrocytes. However, it is unclear how sEHi regulates glutamate excitotoxicity. Here, we used three primary rat cortical culture systems, neuron-enriched (NE), astrocyte-enriched glia-neuron mix (GN), and purified astrocytes, to delineate the underlying mechanism by which sEHi and 14,15-EET attenuate excitotoxicity. We found that sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) and 14,15-EET both attenuated N-methyl-D-aspartate (NMDA)-induced neurite damage and cell death in GN, not NE, cortical cultures. The anti-excitotoxic effects of 14,15-EET and AUDA were both blocked by the group 1 mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), as were their protective effects against NMDA-disrupted perineuronal astrocyte processes expressing glutamate transporter-1 (GLT-1) and subsequent glutamate uptake. Knockdown of sEH expression also attenuated NMDA neurotoxicity in mGluR5- and GLT-1-dependent manners. The 14,15-EET/AUDA-preserved astroglial integrity was confirmed in glutamate-stimulated primary astrocytes along with the reduction of the c-Jun N-terminal kinase 1 phosphorylation, in which the 14,15-EET effect is mGluR5-dependent. In vivo studies validated that sEHi and genetic deletion of sEH (Ephx2-KO) ameliorated excitotoxic kainic acid-induced seizure, memory impairment, and neuronal loss while preserving GLT-1-expressing perineuronal astrocytes in hippocampal CA3 subregions. These results suggest that 14,15-EET mediates mGluR5-dependent anti-excitotoxicity by protecting astrocytes to maintain glutamate homeostasis, which may account for the beneficial effect of sEH inhibition in excitotoxic brain injury and diseases. |
Date: | 2019-12 |
Relation: | Molecular Neurobiology. 2019 Dec;56(12):8451-8474. |
Link to: | http://dx.doi.org/10.1007/s12035-019-01669-8 |
JIF/Ranking 2023: | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0893-7648&DestApp=IC2JCR |
Cited Times(WOS): | https://www.webofscience.com/wos/woscc/full-record/WOS:000494860800036 |
Cited Times(Scopus): | https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85068224486 |
Appears in Collections: | [謝奉勳] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
PUB31257558.pdf | | 20263Kb | Adobe PDF | 296 | View/Open |
|
All items in NHRI are protected by copyright, with all rights reserved.
|