Bacteriorhodopsin (BR), a light-sensitive bacterial proton pump, has been demonstrated the capacity for regulating the neural activity in mammalian cells. Because of the difficulty in production and purification in large quantities, the BR proteins have neither been directly employed to biomedical applications nor verified the functionality by protein administration. Previously, we have invented a highly expressible bacteriorhodopsin (HEBR) and established the massive production protocol. In the current study, we mass-produced the two types of HEBR proteins that have normal or abnormal activity on the proton pumping, and then we treated murine neural stem cells (NSCs) with these HEBR proteins. We discovered that the cell behaviors including growth, metabolism, mitochondrial inner membrane potential, and differentiation were obviously affected in NSCs after the treatment of HEBR proteins. Particularly, these effects induced by HEBR proteins were correlated to their proton pump activity and could be altered by cell culture substrate materials. Current findings suggest that the engineered light-sensitive HEBR protein can serve as a biological material to directly influence the multiple behaviors of mammalian cells, which is further modified by the cell culture substrate material, revealing the versatile potential of HEBR protein in biomaterial applications.
Date:
2019-05-22
Relation:
ACS Biomaterials Science and Engineering. 2019 May 22;5(6):3068-3078.