國家衛生研究院 NHRI:Item 3990099045/11888
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 967807      線上人數 : 797
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11888


    題名: Carbon-doped TiO2 activated by X-ray irradiation for the generation of reactive oxygen species to enhance photodynamic therapy in tumor treatment
    作者: Yang, CC;Tsai, MH;Li, KY;Hou, CH;Lin, FH
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Traditional photodynamic therapy (PDT) is limited by the penetration depth of visible light. Although the light source has been changed to near infrared, infrared light is unable to overcome the penetration barrier and it is only effective at the surface of the tumors. In this study, we used X-ray as a light source for deep-seated tumor treatment. A particle with a narrow band gap when exposed to soft X-rays would produce reactive oxygen species (ROS) to kill tumor cell, with less damage to the normal tissues. Anatase TiO2 has been studied as a photosensitizer in PDT. In the experiment, C was doped into the anatase lattice at an optimum atomic ratio to make the band gap narrower, which would be activated by X-ray to produce more ROS and kill tumor cells under stress. The results showed that the synthesized TiO2:C particles were identified as crystal structures of anatase. The synthesized particles could be activated effectively by soft X-rays to produce ROS, to degrade methylene blue by up to 30.4%. Once TiO2:C was activated by X-ray irradiation, the death rate of A549 cells in in vitro testing was as high as 16.57%, on day 2. In the animal study, the tumor size gradually decreased after treatment with TiO2:C and exposure to X-rays on day 0 and day 8. On day 14, the tumor declined to nearly half of its initial volume, while the tumor in the control group was twice its initial volume. After the animal was sacrificed, blood, and major organs were harvested for further analysis and examination, with data fully supporting the safety of the treatment. Based on the results of the study, we believe that TiO2:C when exposed to X-rays could overcome the limitation of penetration depth and could improve PDT effects by inhibiting tumor growth effectively and safely, in vivo.
    日期: 2019-04-26
    關聯: International Journal of Molecular Sciences. 2019 Apr 26;20(9):Article number 2072.
    Link to: http://dx.doi.org/10.3390/ijms20092072
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1422-0067&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000469753500019
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065499615
    顯示於類別:[林峯輝] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    PUB31035468.pdf4615KbAdobe PDF335檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋