English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 911949      Online Users : 1053
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/11790


    Title: Multi-labeled electrochemical sensor for cost-efficient detection of single nucleotide substitutions in folded nucleic acids
    Authors: Sun, SC;Dou, HY;Chuang, MC;Kolpashchikov, DM
    Contributors: National Institute of Infectious Diseases and Vaccinology
    Abstract: Analysis of single nucleotide substitutions (SNS) in nucleic acids is the basis for the diagnosis of drug-resistant pathogens as well as human genetic disorders among a broad range of other applications. However, SNS are often inaccessible for the analysis by hybridization probe due to the location in double stranded regions of folded single stranded DNA or RNA analytes. Here we introduce an electrochemical sensor that is able to analyze SNS in folded nucleic acids. The electrochemical sensor takes advantage of a universal electrode-bound hairpin (UTH). It relies on the recognition of targeted nucleic acids by analyte-specific adaptor strands R and L that also hybridize with UTH. Strand L can bind several methylene blue (MeB)-probes thus placing MeB groups close to the electrode surface, which enables cathodic charge transfer. We demonstrated that the same UTH-functionalized electrode and MeB-probe can be used to analyze DNA analytes with different sequences. The sensor is highly selective toward SNS even at room temperature and can be regenerated for next round by rinse with water. The ability of the sensor to analyze SNS within secondary structure folded DNA was demonstrated. The sensing system is capable of detecting SNS in bacterial DNA, useful to differentiate drug-resistant from drug-susceptible mycobacterium tuberculosis. The proposed platform uniquely combines high SNS selectivity with ability to analyze potentially any DNA or RNA sequence including those folded in stable structures, therefore, creates a basis for a cost efficient electrochemical sensing of nucleic acids applicable both in medical diagnostics and environmental monitoring of microorganisms.
    Date: 2019-05
    Relation: Sensors and Actuators B-Chemical. 2019 May;287:569-575.
    Link to: http://dx.doi.org/10.1016/j.snb.2019.02.073
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0925-4005&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000461341700069
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85061997577
    Appears in Collections:[杜鴻運] 期刊論文

    Files in This Item:

    File SizeFormat
    ISI000461341700069.pdf1110KbAdobe PDF324View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback