國家衛生研究院 NHRI:Item 3990099045/11081
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12189/12972 (94%)
造访人次 : 955556      在线人数 : 757
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11081


    题名: Studying the hypothalamic insulin signal to peripheral glucose intolerance with a continuous drug infusion system into the mouse brain
    作者: Ajoy, R;Chou, SY
    贡献者: NHRI Graduate Student Program
    摘要: Insulin regulates systematic metabolism in the hypothalamus and the peripheral insulin response. An inflammatory reaction in peripheral adipose tissues contributes to type 2 diabetes mellitus (T2DM) development and appetite regulation in the hypothalamus. Chemokine CCL5 and C-C chemokine receptor type 5 (CCR5) levels have been suggested to mediate arteriosclerosis and glucose intolerance in type 2 diabetes mellitus (T2DM). In addition, CCL5 plays a neuroendocrine role in the hypothalamus by regulating food intake and body temperature, thus, prompting us to investigate its function in hypothalamic insulin signaling and the regulation of peripheral glucose metabolism. The micro-osmotic pump brain infusion system is a quick and precise way to manipulate CCL5 function and study its effect in the brain. It also provides a convenient alternative approach to generating a transgenic knockout animal. In this system, CCL5 signaling was blocked by intracerebroventricular (ICV) infusion of its antagonist, (Met)CCL5, using a micro-osmotic pump. The peripheral glucose metabolism and insulin responsiveness was detected by the Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). Insulin signaling activity was then analyzed by protein blot from tissue samples derived from the animals. After 7-14 days of (Met)CCL5 infusion, the glucose metabolism and insulin responsiveness was impaired in mice, as seen in the results of the OGTT and ITT. The IRS-1 serine302 phosphorylation was increased and the Akt activity was reduced in mice hypothalamic neurons following CCL5 inhibition. Altogether, our data suggest that blocking CCL5 in the mouse brain increases the phosphorylation of IRS-1 S302 and interrupts hypothalamic insulin signaling, leading to a decrease in insulin function in peripheral tissues as well as the impairment of glucose metabolism.
    日期: 2018-01
    關聯: Jove-Journal of Visualized Experiments. 2018 Jan(131):Article number e56410.
    Link to: http://dx.doi.org/10.3791/56410
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1940-087X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000426095700040
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000426095700040.pdf598KbAdobe PDF271检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈