國家衛生研究院 NHRI:Item 3990099045/11059
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 855666      Online Users : 1306
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/11059


    Title: Differentiation of mesenchymal stem cells from human induced pluripotent stem cells results in downregulation of c-Myc and DNA replication pathways with immunomodulation toward CD4 and CD8 cells
    Authors: Wang, LT;Jiang, SS;Ting, CH;Hsu, PJ;Chang, CC;Sytwu, HK;Liu, KJ;Yen, BL
    Contributors: Institute of Cellular and Systems Medicine;National Institute of Cancer Research
    Abstract: Multilineage tissue-source mesenchymal stem cells (MSCs) possess strong immunomodulatory properties and are excellent therapeutic agents, but require constant isolation from donors to combat replicative senescence. The differentiation of human induced pluripotent stem cells (iPSCs) into MSCs offers a renewable source of MSCs; however, reports on their immunomodulatory capacity have been discrepant. Using MSCs differentiated from iPSCs reprogrammed using diverse cell types and protocols, and in comparison to human embryonic stem cell (ESC)-MSCs and bone marrow (BM)-MSCs, we performed transcriptome analyses and assessed for functional immunomodulatory properties. Differentiation of MSCs from iPSCs results in decreased c-Myc expression and its downstream pathway along with a concomitant downregulation in the DNA replication pathway. All four lines of iPSC-MSCs can significantly suppress in vitro activated human peripheral blood mononuclear cell (PBMC) proliferation to a similar degree as ESC-MSCs and BM-MSCs, and modulate CD4 T lymphocyte fate from a type 1 helper T cell (Th1) and IL-17A-expressing (Th17) cell fate to a regulatory T cell (Treg) phenotype. Moreover, iPSC-MSCs significantly suppress cytotoxic CD8 T proliferation, activation, and differentiation into type 1 cytotoxic T (Tc1) and IL-17-expressing CD8 T (Tc17) cells. Coculture of activated PBMCs with human iPSC-MSCs results in an overall shift of secreted cytokine profile from a pro-inflammatory environment to a more immunotolerant milieu. iPSC-MSC immunomodulation was also validated in vivo in a mouse model of induced inflammation. These findings support that iPSC-MSCs possess low oncogenicity and strong immunomodulatory properties regardless of cell-of-origin or reprogramming method and are good potential candidates for therapeutic use.
    Date: 2018-06
    Relation: Stem Cells. 2018 Jun;36(6):903-914.
    Link to: http://dx.doi.org/10.1002/stem.2795
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1066-5099&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000434175000010
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85041919759
    Appears in Collections:[Betty Lin-Ju Yen] Periodical Articles
    [Shih-Sheng Jiang] Periodical Articles
    [Ko-Jiunn Liu] Periodical Articles

    Files in This Item:

    File SizeFormat
    PUB29396902.pdf1309KbAdobe PDF367View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback