In fluorescence spectroscopy and imaging, fluorescence lifetime measurement-assessing the average time fluorophores spend in their excited state before returning to their ground state-offers a number of advantages over quantifying fluorescence intensities that include resistance to photo-bleaching and independence from fluorophore concentration, excitation intensity, and measurement methodology. Despite growing interest, fluorescence lifetime techniques frequently mandate relatively complex instrumentation, slow data acquisition rates, and significant data analyses. In this work, we demonstrate the feasibility of measuring fluorescence lifetimes using off-the-shelf analog silicon photomultipliers and switched-capacitor array waveform sampling techniques, with precision matching that of much larger and more elaborate commercial instruments.
Date:
2017-09
Relation:
Review of Scientific Instruments. 2017 Sep;88(9):Article number 096107.