English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 908383      Online Users : 999
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/10752


    Title: Alterations in cardiovascular function by particulate matter in rats using a crossover design
    Authors: Chuang, HC;Lin, YJ;Chou, CCK;Hwang, JS;Chen, CC;Yan, YH;Hsieh, HI;Chuang, KJ;Cheng, TJ
    Contributors: Institute of Population Health Sciences
    Abstract: The objective of this study was to investigate associations between cardiovascular effects and urban ambient particle constituents using an in vivo crossover experimental design. Ambient particles were introduced to an exposure chamber for whole-body exposure of WKY rats, where the particulate matter with an aerodynamic diameter of <2.5 mum (PM2.5) mass concentration, particle number concentration, and black carbon (BC) were monitored. Organic carbon (OC), elemental carbon (EC), and soluble ions of PM2.5 were determined. In a crossover design, rats were exposed to ambient particles or high-efficiency particle arrestance (HEPA)-filtered control air for 7 days following a 7-day washout interval. The crossover exposure between particles and HEPA-filtered air was repeated 4 times. Radiotelemetric data on blood pressure (BP) [systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), and mean arterial pressure (MAP)], heart rate (HR), and heart rate viability (HRV) were subsequently obtained during the entire study. Exposure to the PM2.5 mass concentration was associated with decreases in the SBP, DBP, MAP, and HR (p < 0.05), whereas no significant changes in the BP or HR occurred with the particle number or black carbon. For HRV, the ln 5-min standard deviation of the normal-to-normal (NN) interval (LnSDNN) and the ln root mean square of successive differences in adjacent NN intervals (LnRMSSD) were positively associated with the PM2.5 mass concentration (p < 0.05). There were no significant effects of the particle number concentration or BC on HRV. Alterations in the HR were associated with OC, EC, Na+, Cl-, and NO3-. Cl- was associated with the DBP, MAP, HR, SDNN, and RMSSD. NO3- was correlated with the SBP, MAP, HR, SDNN, and RMSSD. In conclusion, we observed cardiovascular responses to ambient particles in vivo using a crossover design which can reduce animal use in future environmental studies.
    Date: 2017-08-31
    Relation: Environmental Pollution. 2017 Aug 31;231(Pt. 1):812-820.
    Link to: http://dx.doi.org/10.1016/j.envpol.2017.08.082
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0269-7491&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000414881000082
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85028517173
    Appears in Collections:[陳主智] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB28866422.pdf2256KbAdobe PDF371View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback