國家衛生研究院 NHRI:Item 3990099045/10743
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 917143      在线人数 : 1465
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/10743


    题名: A selective bottleneck shapes the evolutionary mutant spectra of enterovirus A71 during viral dissemination in humans
    作者: Huang, SW;Huang, YH;Tsai, HP;Kuo, PH;Wang, SM;Liu, CC;Wang, JR
    贡献者: National Institute of Infectious Diseases and Vaccinology
    摘要: RNA viruses accumulate mutations to rapidly adapt to environmental changes. Enterovirus A71 (EV-A71) causes various clinical manifestations with occasional severe neurological complications. However, the mechanism by which EV-A71 evolves within the human body is unclear. Utilizing deep sequencing and haplotype analyses of viruses from various tissues of an autopsy patient, we sought to define the evolutionary pathway by which enterovirus A71 evolves fitness for invading the central nervous system in humans. Broad mutant spectra with divergent mutations were observed at the initial infection sites in the respiratory and digestive systems. After viral invasion, we identified a haplotype switch and dominant haplotype, with glycine at VP1 residue 31 in viral particles disseminated into the integumentary and central nervous systems. In vitro viral-growth and fitness analyses indicated that VP1-31G conferred growth and a fitness advantage in human neuronal cells, whereas VP1-31D showed enhanced replication in human colorectal cells. A higher proportion of VP1-31G was also found among fatal cases, suggesting that it may facilitate central nervous system infection in humans. Our data provide the first glimpse of EV-A71 quasispecies from oral tissues to central nervous system within humans, showing broad implications for the surveillance and pathogenesis of this re-emerging viral pathogen.IMPORTANCE EV-A71 continues to be a worldwide burden to public health. Although EV-A71 is the major etiological agent of hand-foot-and-mouth disease, it can also cause neurological pulmonary edema, encephalitis, and even death, especially in children. Understanding selection processes enabling dissemination and accurately estimating EV-A71 diversity during invasion in humans are critical for applications in viral pathogenesis and vaccine studies. Here, we define a selection bottleneck appearing in respiratory and digestive tissues. Glycine substitution at VP1 residue 31 helps viruses break through the bottleneck and invade the central nervous system. This substitution is also advantageous for replication in neuronal cells in vitro Considering that fatal cases contain enhanced glycine substitution at VP1-31, we suggest that the increased prevalence of VP1-31G may alter viral tropism and aid central nervous system invasion. Our findings provide new insights into a dynamic mutant spectral switch active during acute viral infection with emerging viral pathogens.
    日期: 2017-12
    關聯: Journal of Virology. 2017 Dec;91(23):Article number e01062-17.
    Link to: http://dx.doi.org/10.1128/jvi.01062-17
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0022-538X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000415289800014
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85033782191
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB28931688.pdf4323KbAdobe PDF321检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈