國家衛生研究院 NHRI:Item 3990099045/10679
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 917549      在线人数 : 1364
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/10679


    题名: A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting
    作者: Wong, CW;Chen, YT;Chien, CL;Yu, TY;Rwei, SP;Hsu, SH
    贡献者: Institute of Cellular and Systems Medicine
    摘要: The 3D bioprinting and cell/tissue printing techniques open new possibilities for future applications. To facilitate the 3D bioprinting process, a large amount of living cells are required. Induced pluripotent stem cells (iPSCs) represent a promising cell source for bioprinting. However, the maintenance and expansion of undifferentiated iPSCs are expensive and time consuming. Therefore, in this study a culture method to obtain a sufficient amount of healthy and undifferentiated iPSCs in a short-term period was established. The iPSCs could be passaged for twice on tissue culture polystyrene (TCPS) dish with the conditional medium and could adapt to the feeder-free environment. Feeder-free dishes were further prepared from chitosan, chitosan-hyaluronan, silk fibroin, and polyurethane (PU1 and PU2) two-dimensional substrates. The iPSCs cultured on the chitosan substrates showed a higher proliferation rate without losing the stemness feature. Among the different materials, PU2 could be prepared as a thermoresponsive hydrogel, which was a potential ink for 3D bioprinting. The iPSCs cultured on PU2 substrates well survived when further embedded in PU2 hydrogel. Moreover, PU2 hydrogel printed with iPSCs remained structural integrity. The use of PU2 hydrogel to embed iPSCs reduced the injury to iPSCs by shear stress. These results indicate that iPSCs could be expanded on chitosan or PU2 membranes without the feeder layer and then printed in PU2 hydrogel. The combination of these steps could offer a new possibility for future applications of iPSC-based 3D bioprinting in tissue engineering.
    日期: 2018-01
    關聯: Materials Science and Engineering C. 2018 Jan;82:69-79.
    Link to: http://dx.doi.org/10.1016/j.msec.2017.08.050
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0928-4931&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000414886400009
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85027699652
    显示于类别:[徐善慧] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85027699652.pdf1286KbAdobe PDF342检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈