國家衛生研究院 NHRI:Item 3990099045/10284
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 913883      線上人數 : 1240
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/10284


    題名: Winner's curse correction and variable thresholding improve performance of polygenic risk modeling based on genome-wide association study summary-level data
    作者: Shi, J;Park, JH;Duan, J;Berndt, ST;Moy, W;Yu, K;Song, L;Wheeler, W;Hua, X;Silverman, D;Garcia-Closas, M;Hsiung, CA;Figueroa, JD;Cortessis, VK;Malats, N;Karagas, MR;Vineis, P;Chang, IS;Lin, D;Zhou, B;Seow, A;Matsuo, K;Hong, YC;Caporaso, NE;Wolpin, B;Jacobs, E;Petersen, GM;Klein, AP;Li, D;Risch, H;Sanders, AR;Hsu, L;Schoen, RE;Brenner, H;Consortium, MGS GWAS;Gecco;Consortium, The GAME-ON/TROC: GWAS;Consortium, PRACTICAL;Consortium, PanScan;Consortium, The GAME-ON/ELLIPSE;Stolzenberg-Solomon, R;Gejman, P;Lan, Q;Rothman, N;Amundadottir, LT;Landi, MT;Levinson, DF;Chanock, SJ;Chatterjee, N
    貢獻者: Division of Biostatistics and Bioinformatics;National Institute of Cancer Research
    摘要: Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner’s-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner’s curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25–50% increase in the prediction R2) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner’s curse correction improved prediction R2from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R2to 3.53% (P = 2×10−5). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure.
    日期: 2016-12-30
    關聯: PLoS Genetics. 2016 Dec 30;12(12):Article number e1006493.
    Link to: http://dx.doi.org/10.1371/journal.pgen.1006493
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1553-7404&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000392138700036
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85007574079
    顯示於類別:[熊昭] 期刊論文
    [張憶壽] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85007574079.pdf2804KbAdobe PDF212檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋