國家衛生研究院 NHRI:Item 3990099045/10236
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 854501      在线人数 : 669
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/10236


    题名: Human placenta-derived multipotent cells (PDMCs) protect against Klebsiella pneumoniae-induced pneunomia by enhancing polymorphonuclear granulocytes (PMN) functions
    作者: Wang, LT;Chao, YY;Lee, W;Huang, LY;Liu, KJ;Siu, LK;Yen, BL
    贡献者: Institute of Cellular and Systems Medicine;Division of Infectious Diseases;National Institute of Cancer Research
    摘要: Human mesenchymal stem cells (MSCs) are multilineage somatic progenitors with strong immunomodulatory properties which have been well-demonstrated for T lymphocytes and dendritic cells/macrophages. However, interactions with neutrophils (polymorphonuclear granulocytes or PMNs)—the most abundant population of human leukocytes—are less well understood. Therefore, we investigated the interactions of human placenta-derived multipotent cells (PDMCs), a population of fetal-stage MSCs, with PMNs through in vitro studies and a mouse model of Klebsiella pneumoniae (KP)-induced pneumonia. KP is a highly virulent gram-negative bacterium and a leading cause of community- and hospital-acquired infections, especially pneumonia. We found that after co-culture with PDMCs, PMN expression of CD11b—a marker of activation—as well as phagocytosis of FITC- labeled KP was significantly increased. Moreover, PMN oxidative metabolism was significantly increased as well, which manifested as increased anti-bacterial activity and improved killing of KP. To ascertain the therapeutic efficacy of PDMCs on bacterial infections, we infected wild type mice with KP by intratracheal inoculation with subsequent intravenous administration of PDMCs. Surprisingly, while injection of PDMCs reduced the influx of PMNs in KP-infected lung tissue, respiratory burst activity was simultaneously enhanced. PDMC treatment also decreased bacterial counts both locally in lung tissue and systemically in the bloodstream. Most importantly, administration of PDMCs significantly increased survival rates in this mouse model of KP pneumonia. Taken together, we found that PDMCs enhance PMN functions in vitro and in vivo towards KP without increasing overall lung inflammatory damage. Our data strongly implicate a possible therapeutic role for PDMCs towards gram-negative bacterial infections.
    日期: 2016-08
    關聯: European Journal of Immunology. 2016 Aug;46(Suppl. 1):1242.
    Link to: http://dx.doi.org/10.1002/eji.201670200
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0014-2980&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000391563600009
    显示于类别:[顏伶汝] 會議論文/會議摘要
    [蕭樑基] 會議論文/會議摘要
    [劉柯俊] 會議論文/會議摘要

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000391563600009.pdf130KbAdobe PDF475检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈