Discovery and development of tylopnorine derived dibenzoquinolines-33b compounds into therapeutic agents

Shiow-Ju Lee, Chih-Hung Li, Yue-Zhi Lee and Cheng-Wei Yang

- Author Affiliations

Institute of Biotechnology and Pharmaceutical Research, National Health Researh Institutes, Miaoli County, Taiwan

Abstract

We investigated the role of the tylophorine E ring on the biological activities through synthesis of a series of derivatives, bearing modifications at the E ring and N-substitutions. All the derivatives were submitted for a variety of tests, anti-cell growth against a panel of cancer cell lines, suppressing nitric oxide production inLPS/IFNgamma stimulated RAW264.7 cells, and anti-viral replication in TGEV infected ST cells detected by inhibition of TGEV N and S protein expression. The uncyclized derivatives, dibenzoquinolines, do not have the enantimerism issue at C13a position. We have synthesized a series of novel tylophorine-derived dibenzoquinolines and evaluated for their biological activities. The role of tylophorine E ring was explored unprecedentedly for the first time. Unlike other reported tylophorine derivatives, the potent tylophorine-derived dibenzoquinolines appear to retain similar modes of action to those of tylophorine in terms of multi-biological activities for anti-inflammation, anti-cancer cell proliferation, and anti-coronavirus. The most potent compound dibenzoquinolines-33b (DBQ-33b) showed improved solubility, in vivo efficacies in a murine tumor xenograft model administrated orally and a murine paw edema model, good bioavailability, and no significant neurotoxicity tested by a rota-rod test for motor coordination. More orally active leads derived from DBQ-33b have been designed and synthesized and development of DBQ-33b derived lead compounds into therapeutic agents is ongoing.

Support or Funding Information

This work was supported by a grant (MOST 104-2325-B-400-006-) from the National Research Program for Biopharmaceuticals, Ministry of Science and Technology, Taiwan ROC.

Footnotes

This abstract is from the Experimental Biology 2016 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.