English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12274/13266 (93%)
Visitors : 1777117      Online Users : 129
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/15157


    Title: IoT-based wearable health monitoring device and its validation for potential critical and emergency applications
    Authors: Wu, JY;Wang, YH;Ching, CTS;Wang, HMD;Liao, LD
    Contributors: Institute of Biomedical Engineering and Nanomedicine
    Abstract: The COVID-19 pandemic brought the world to a standstill, posing unprecedented challenges for healthcare systems worldwide. The overwhelming number of patients infected with the virus placed an enormous burden on healthcare providers, who struggled to cope with the sheer volume of cases. Furthermore, the lack of effective treatments or vaccines means that quarantining has become a necessary measure to slow the spread of the virus. However, quarantining places a significant burden on healthcare providers, who often lack the resources to monitor patients with mild symptoms or asymptomatic patients. In this study, we propose an Internet of Things (IoT)-based wearable health monitoring system that can remotely monitor the exact locations and physiological parameters of quarantined individuals in real time. The system utilizes a combination of highly miniaturized optoelectronic and electronic technologies, an anti-epidemic watch, a mini-computer, and a monitor terminal to provide real-time updates on physiological parameters. Body temperature, peripheral oxygen saturation (SpO(2)), and heart rate are recorded as the most important measurements for critical care. If these three physiological parameters are aberrant, then it could represent a life-endangering situation and/or a short period over which irreversible damage may occur. Therefore, these parameters are automatically uploaded to a cloud database for remote monitoring by healthcare providers. The monitor terminal can display real-time health data for multiple patients and provide early warning functions for medical staff. The system significantly reduces the burden on healthcare providers, as it eliminates the need for manual monitoring of patients in quarantine. Moreover, it can help healthcare providers manage the COVID-19 pandemic more effectively by identifying patients who require medical attention in real time. We have validated the system and demonstrated that it is well suited to practical application, making it a promising solution for managing future pandemics. In summary, our IoT-based wearable health monitoring system has the potential to revolutionize healthcare by providing a cost-effective, remote monitoring solution for patients in quarantine. By allowing healthcare providers to monitor patients remotely in real time, the burden on medical resources is reduced, and more efficient use of limited resources is achieved. Furthermore, the system can be easily scaled to manage future pandemics, making it an ideal solution for managing the health challenges of the future.
    Date: 2023-06-16
    Relation: Frontiers in Public Health. 2023 Jun 16;11:Article number 1188304.
    Link to: http://dx.doi.org/10.3389/fpubh.2023.1188304
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2296-2565&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001019080100001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85164210387
    Appears in Collections:[廖倫德] 期刊論文

    Files in This Item:

    File Description SizeFormat
    ISI001019080100001.pdf4015KbAdobe PDF292View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback